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Wave function correlations on the ballistic scale: Exploring quantum chaos by quantum disorder
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We study the statistics of wave functions in a ballistic chaotic system. The statistical ensemble is generated
by adding weak smooth disorder. The conjecture of Gaussian fluctuations of wave functions put forward by
Berry @J. Phys. A10, 2083 ~1977!# and generalized by Hortikar and Srednicki@Phys. Rev. Lett.80, 1646
~1998!; Phys. Rev. E57, 7313~1998!# is proven to hold on sufficiently short distances, while it is found to be
strongly violated on larger scales. This also resolves the conflict between the above conjecture and the wave
function normalization. The method is further used to study ballistic correlations of wave functions in a random
magnetic field.
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INTRODUCTION

Understanding of statistical properties of eigenfunctio
of a quantum system whose classical counterpart is cha
and their relation to the underlying classical dynamics is o
of the key problems studied in the field of quantum cha
Among various applications, wave function correlations
important for statistics of electron transport through quant
dots, see Refs.@1,2# and references therein. It was conje
tured by Berry@3# that an eigenfunction of a classically ch
otic system~‘‘billiard’’ ! can be represented as a random
perposition of plane waves with fixed absolute valuek of the
wave vector~determined by the energyk2/2m5E, wherem
is the mass and we set\51!. This implies Gaussian statis
tics of the eigenfunction amplitudec(r ),

P$c%}expF2
b

2 E d2rd2r 8c* ~r !C21~r ,r 8!c~r 8!G , ~1!

determined solely by the correlation function~we consider a
two-dimensional system!

C~r1 ,r2![^c* ~r1!c~r2!&5J0~kur12r2u!/V. ~2!

Here b51 or 2 for a system with preserved~respectively,
broken! time reversal symmetry,V is the system area, andJ0
the Bessel function. For definiteness, we will consider
caseb52 below; generalization to systems withb51 is
straightforward.

Hortikar and Srednicki@4# noticed that Eqs.~1!, and~2!,
which do not depend on any details of the dynamics, m
only be valid for sufficiently small spatial separation. Th
generalized Berry’s hypothesis and conjectured the Gaus
statistics ~1! with a more general, system-specific kern
C(r1 ,r2) replacing Eq.~2!,
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C~r1 ,r2!5
Im Gsc~r1 ,r2!

*dr Im Gsc~r ,r !
, ~3!

whereGsc is a semiclassical Green’s function@4#. This pro-
posal was supported by the observation@5# that the result
obtained in Ref.@6# for two-point correlations in a diffusive
system is consistent with the Gaussian statistics.

The conjecture~1!, ~3!, while physically very appealing
obviously requires a formal derivation. Furthermore, wh
taken literally, this conjecture contradicts the wave functi
normalization,

E dr @^uc2~r !c2~r 8!u&2^uc2~r !u&^uc2~r 8!u&#50, ~4!

since the integrand is equal toC2(r ,r 8).0 according to Eq.
~1!. Therefore, limits of validity of this conjecture have to b
understood. All this points to a need of a systematic study
wave function statistics in ballistic systems, which is the a
of the present paper.

EIGENFUNCTION STATISTICS IN A BALLISTIC SYSTEM

In order to speak about the wave function statist
P$c(r )%, one should first define an ensemble over which
averaging goes. Such an ensemble can be generated@7# by
adding to a system under consideration a random pote
U(r ) characterized by a correlation functionW(r2r 8)
5^U(r )U(r 8)& with a correlation lengthd. Parameters of
this random potential are assumed to satisfyk21!d! l s!L
! l tr , wherel s ( l tr) is the single-particle~respectively, trans-
port! mean free path, andL is the characteristic size of th
system. The conditionl tr@L follows from the requirement
that the additional disorder does not influence the class
dynamics of the system, while the inequalityl s!L guaran-
tees that the ensemble of quantum systems is large enou
produce meaningful result. Note that the potential is smoo
kd@1, sincel tr / l s;(kd)2. On the technical side, introduc
ing the additional random potential allows us to apply, with
proper generalization, methods developed earlier for di
sive systems~see Ref.@8# for a review!.

After the ensemble averaging, the problem is described
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a ballistic s model of a supermatrix fieldQ(r ,n) with the
action @9–11,7#

S@Q#5Str lnFE2Ĥ1 ihL2
i

2 E dn8Q~r ,n8!w~n,n8!G
2

pn

4 E d2rdndn8StrQ~r ,n!w~n,n8!Q~r ,n8!,

~5!

whereĤ is the Hamiltonian of the system~without disorder!,
n is the density of states,w(n,n8)52pnW(kun2n8u) is the
scattering cross section by the random potential, andn is a
unit vector characterizing the direction of velocity on t
energy surface. On the scales@ l s Eq. ~5! reduces to the form
proposed in Refs.@12,13#. The two-point correlation function
of the wave function intensities is expressed in this appro
as @8,7#

^uc2~r1!c2~r2!u&5 lim
h→0

hD

p
^@G11~r1 ,r1!G22~r2 ,r2!

1G12~r1 ,r2!G21~r2 ,r1!#&S@Q# , ~6!

whereD is the mean level spacing,Ĝ is the Green’s function
in the fieldQ,

Ĝ5FE2Ĥ1 ihL2
i

2 E dn8Q~r ,n8!w~n,n8!G21

, ~7!

and the subscripts 1, 2 refer to the advanced-retarded de
position ~the boson-boson components being implied!. We
first evaluate Eq.~6! in the zero-mode approximation,Q(r )
5Q0 . The Green’s function~7! is given in the leading orde
by

G0~r ,r 8!5 i Im GR~r ,r 8!Q01ReGR~r ,r 8!, ~8!

GR~r ,r 8!5^r u~E2Ĥ1 i /2ts!
21ur 8&. ~9!

If the pointsr ,r 8 are separated by a distance@ l s from the
billiard boundary, Eq. ~9! reduces to ImGR(r ,r 8)5

2pnJ0(kur2r 8u)e2ur2r8u/2l s. Substituting Eq.~8! in Eq. ~6!
and expanding the action~5! up to the linear-in-h term,
S@Q#.pnhV StrQ0L, one finds, in full analogy with the
case of diffusive systems,

V2^uc2~r1!c2~r2!u&.11kq~r1 ,r2!, ~10!

kq~r ,r 8!5Im GR~r ,r 8!Im GR~r 8,r !/~pn!2, ~11!

with the two contributions on the rhs of Eq.~10! originating
from the termŝ G11G22& and ^G12G21& in Eq. ~6!, respec-
tively. The result~10!, corresponding exactly to the conje
ture ~1!, ~3! of the Gaussian statistics, is in conflict with th
wave function normalization, as explained above.

To resolve this problem, we evaluate the term^G11G22&
more accurately by expanding the Green’s function~7! to the
orderh and the action~5! to the orderh2. While these terms
02520
h

m-

~usually neglected in thes-model calculations! are of the
next order inh and may be naively thought to vanish in th
limit h→0 performed in Eq.~6!, this is not so, sinceQ0
}h21. As a result, we get in the zero-mode approximatio

V2^uc2~r1!c2~r2!u&ZM215kq~r1 ,r2!2 k̄q~r1!2 k̄q~r2!1k% q

~12!

~terms of still higher orders inh produce corrections small in
the parameterDts!1!, where

k̄q~r !5V21E d2r 8kq~r ,r 8!,

k% q5V22E d2rd2r 8kq~r ,r 8!. ~13!

The contribution of nonzero modes is found to be@7#

V2^uc2~r1!c2~r2!u&NZM5P̃B~r1 ,r2!, ~14!

where P̃B(r1 ,r2)5PB(r1 ,r2)2PB
(0)(r1 ,r2) describes the

~integrated over direction of velocity! probability of classical
propagation fromr1 to r2 ,

PB~r1 ,r2!5E E dn1dn2D~r1n1 ,r2n2!,

L̂D5~pn!21@d~r12r2!d~n12n2!2V21#, ~15!

with the contributionPB
(0)(r1 ,r2) of direct propagation~be-

fore the first event of disorder scattering! excluded. The sym-
bol L̂ in Eq. ~15! denotes the Liouville operator characteri
ing the classical motion@14#.

We analyze now the total result given by the sum of E
~12! and ~14!. First of all, we stress that it satisfies exact
the constraint~4! of wave function normalization. Next, we
consider sufficiently short distances,ur12r2u! l s . In this
case the correlation function is dominated by the first term
the rhs of Eq.~12!, returning us to the result~10!. Further-
more, we can generalize this result to higher correlat
functions,

^c* ~r1!c~r18! ...c* ~rn!c~rn8!&

52
1

2V~n21!!
lim
h→0

~2pnh!n21

3K (
s

)
i 51

n
1

pn
Gpi ps~ i !

~r i ,rs~ i !8 !L
S@Q#

,

where the summation goes over all permutationss of the set
$1,2,...,n%, pi51 for i 51,..., n21, and pn52. If all the
points r i ,r i8 are within a distance! l s from each other, the
leading contribution to this correlation function is given b
the zero-mode approximation with higher-order terms inh
neglected@i.e., by the same approximation which leads
Eq. ~10!#, yielding
2-2
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Vn^c* ~r1!c~r18!...c* ~rn!c~rn8!&5(
s

)
i 51

n

f F~r i ,rs~ i !8 !,

f F~r ,r 8!52Im GR~r ,r 8!/~pn!. ~16!

This result is identical to the statement~1! of the Gaussian
statistics of eigenfunctions. We have thus proven that
conjecture of Refs.@3,4# holds within a spatial region of an
extension! l s , with the kernelC(r1 ,r2) given by Eqs.~16!
and ~9!.

We turn now to the behavior of the correlat
^uc2(r1)c2(r2)u& at larger separationsur12r2u@ l s . In this
situation, the correlations are dominated by the contribut
~14! of nonzero modes. Let us further note that the smo
part of the zero-mode contribution~12! ~i.e., with Friedel-
type oscillations on the scale of the wavelengthl52p/k
suppressed! is exactly equal to PB

(0) . Therefore, the
smoothed correlation function is given by the classi
propagator,

V2^uc2~r1!c2~r2!u&smooth215PB~r1 ,r2!, ~17!

independent of the relation betweenur12r2u and l s . The
mean free pathl s manifests itself only in setting the scale o
which the oscillatory part of̂uc2(r1)c2(r2)u& gets damped.

A result for the variance of matrix elements related to E
~17! was obtained in Ref.@15# by a semiclassical method
Note, however, that the semiclassical treatment of Ref.@15#
is only justified if one introduces a sufficiently large lev
broadeningh@D, while calculating statistical properties of
single eigenfunction requires the limith!D; see Eq.~6!.

Since we have shown that forl s!L the applicability of
the Gaussian statistics~1!, ~3! is restricted to the scales! l s ,
one may be tempted to ask whether increasingl s beyondL
would be favorable from this point of view. The answer
no; in contrast, forl s*L a further increase ofl s reduces the
range of applicability of the Gaussian statistics. Indeed, i
not difficult to show that forl s@L the Green’s function~9!
has the form ImGR(r1 ,r2).2pnJ0(kur12r2u) ~we assume
for simplicity that the pointsr1 , r2 are sufficiently far from
the boundary! only for ur12r2u! l̃ s , where l̃ s5L2/ l s . At
larger distances,ur12r2u* l̃ s , the Green’s function show
irregular oscillations with a characteristic amplitud
uGR(r1 ,r2)u;pn(k l̃ s)

21/2 independent ofur12r2u, which
are physically due to the interference of waves multiply
flected from the boundary. Therefore, only atur12r2u! l̃ s
the first term in Eq.~12! will dominate and the statistics wil
be Gaussian.

RANDOM MAGNETIC FIELD

In the above we studied the wave function statistics o
given chaotic system by generating an ensemble of quan
systems with the help of an additional random potent
Now we use the same approach to study the wave func
statistics in a random magnetic field~RMF!. In this case, an
ensemble is defined from the very beginning and the in
02520
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duction of additional weak disorder may be considered a
technical trick, the reason for which is explained below.

We consider a white-noise RMFB(r ) with the correlation
function

^B~r !B~r 8!&5Gd~2!~r2r 8!, G!k2, ~18!

and assume that the size of the system,L, is sufficiently
large. On length scales longer than the transport mean
path l tr54k/G this problem is described by the convention
unitary-class diffusives model @10# so that the results ob
tained for diffusive systems@8# apply. We will be interested
however, in wave function correlations on much shorter
ballistic—length scales. Specifically, we will study how th
Friedel-type oscillations in̂uc2(r1)c2(r2)u& decay with in-
creasing ur12r2u. @The smooth part is simply
V2^uc2(r1)c2(r2)u&5(pkur12r2u)21 for all ur12r2u! l tr ,
L, as follows from Eq.~17!.#

In the case of a random potential the scale for the van
ing of oscillations is set by the single-particle mean free p
l s . An attempt to get an analog of this result by derivin
directly the ballistics model via averaging over the RMF
fails, since the equation forl s obtained within the self-
consistent Born approximation~SCBA! leads to an infrared-
divergent and gauge-dependent result@16#. This is a mani-
festation of the fact that in the case of a RMF the sing
particle relaxation rate depends on geometry of the probl

To overcome this problem, we add an additional we
random potential with the mean free pathl s

RP much longer
than the length scale of interest set by the RMF~which we
will find below!. Averaging over this random potential, w
derive thes model in a given realization of the RMF. A
explained above, the two-point correlation function of eige
function intensities on a scaleur12r2u! l s

RP is given by Eqs.
~10! and~11!. Therefore, the desired oscillatory contributio
reads

^kq
osc~r1 ,r2!&RMF52~pn!22 Rê GR~r1 ,r2!GR~r2 ,r1!&RMF,

~19!

whereGR5(E2Ĥ1 i /2ts
RP)21 is the Green’s function in a

given realization of the RMF, and̂̄ &RMF denotes averag
ing over the RMF realizations. This~second! averaging can
be performed with use of the path integral formalism@17#.
The product of the two Green’s functions in Eq.~19! can be
written as

^GR~R,0!GR~0,R!&RMF5E
0

`

dT1dT2E
r i ~0!50

r i ~Ti !5R
Dr1Dr2

3exp@ i ~E1 i /2ts
RP!~T11T2!

1 iSkin2SRMF#, ~20!

where Skin5*0
T1dt mṙ1

2/21*0
T2dt mṙ2

2/2, andSRMF5Gsno /2,
with sno denoting the nonoriented area between the two
jectoriesr1(t) and r2(t). The integral~20! is dominated by
the pairs of paths being close to each other and corresp
ing to an almost uniform and straight motion from 0 toR. To
make this explicit, it is useful to perform the change of va
2-3
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ables @17#, introducing r5r12r2 , r5(r11r2)/2, t15(T1
1T2)/2, andt25T22T1 (t1@t2). The RMF-induced part
of the action takes then the form

SRMF5
vG

2 E
0

t1

dtur'~ t !u, ~21!

wherev5k/m is the particle velocity, and we have splitr
into components parallel (r i) and perpendicular (r') to ṙ
'R/t1 . While the integrals overr andr i are essentially the
same as for a free particle, that overr' has the form of the
Feynman integral for a one-dimensional particle in the
tential i (vG/2)uxu. The corresponding Green’s functio
g(x,x8,t) reads in the frequency representation atx5x850
~which is what we need in view of the boundary conditio
on r'!.

g~0,0,v!52
i 21/3

2
~mt0!1/2

Ai ~2 i 22/3vt0!

Ai 8~2 i 22/3vt0!
, ~22!

where Ai(z) is the Airy function, and

t05~4m/G2v2!1/3. ~23!

This leads to the following result for the oscillatory part
the wave function correlation function

V2^uc2~r1!c2~r2!u&RMF
osc

5
1

pkr H sin~2kr !, r ! l 0

sin~2kr1uz0ur /2l 02p/12!

3~pr / l 0!1/2exp@2)uz0ur /2l 0#, r @ l 0

~24!

wherer 5ur12r2u, z0.21.05 is the lowest zero of Ai8(z),
and l 05vt0 .

We thus find that the oscillations are suppressed on
scale; l 05vt05(4k/G2)1/3. Note thatl 0 is parametrically
different from both the transport mean free pathl tr54k/G
and the length l dHvA5vtdHvA5(2p/G)1/2 characterizing
damping of de Haas-van Alphen magnetooscillations of
density of states,rosc}exp@2(p/vctdHvA)2# @17#. The differ-
ence betweenl 0 andl dHvA ~in the case of a random potentia
both these scales are set byl s! illustrates the already men
02520
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tioned dependence of the single-particle relaxation rate
the geometry of the problem in the case of RMF.

The scalel 0 was obtained in Ref.@18# from consideration
of certain Green’s function with an obscure physical me
ing. We have demonstrated that the lengthl 0 determines an
observable quantity—the scale of decay of the oscillat
part of the wave function correlation function.

CONCLUSIONS

We have studied the wave function statistics in a chao
ballistic system. The corresponding statistical ensemble
defined by adding a smooth random potential, satisfyingl tr
@L@ l s . The first inequality preserves the ballistic dynam
ics, while the second one ensures that the ensemble of q
tum systems is sufficiently large and provides meaning
statistics. By using the ballistics-model approach we hav
shown that the conjecture of Gaussian fluctuations of w
functions @3,4# holds on sufficiently short distancesur i2r j u
! l s , while it is strongly violated on larger scales. Our r
sults solve, in particular, the problem of inconsistency of
conjecture of Gaussian statistics with the wave funct
normalization.

We have further applied these results to study the deca
Friedel-type oscillations in the correlation functio
^uc2(r1)c2(r2)u& in a RMF. In this case averaging over a
additional weak random potential yields Gaussian fluct
tions of wave functions in a given realization of the RM
The remaining averaging over the RMF realizations p
formed via the path integral formalism leads to the res
~24!. The scalel 0 for the decay of oscillations~playing the
role of the single-particle mean free pathl s! is given by Eq.
~23!, providing physical meaning to a length found in Re
@18# from some formal consideration.
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